Fuzzy decision trees for planning and autonomous control of a coordinated team of UAVs
نویسندگان
چکیده
A fuzzy logic resource manager that enables a collection of unmanned aerial vehicles (UAVs) to automatically cooperate to make meteorological measurements will be discussed. Once in flight no human intervention is required. Planning and real-time control algorithms determine the optimal trajectory and points each UAV will sample, while taking into account the UAVs’ risk, risk tolerance, reliability, mission priority, fuel limitations, mission cost, and related uncertainties. The control algorithm permits newly obtained information about weather and other events to be introduced to allow the UAVs to be more effective. The approach is illustrated by a discussion of the fuzzy decision tree for UAV path assignment and related simulation. The different fuzzy membership functions on the tree are described in mathematical detail. The different methods by which this tree is obtained are summarized including a method based on using a genetic program as a data mining function. A second fuzzy decision tree that allows the UAVs to automatically collaborate without human intervention is discussed. This tree permits three different types of collaborative behavior between the UAVs. Simulations illustrating how the tree allows the different types of collaboration to be automated are provided. Simulations also show the ability of the control algorithm to allow UAVs to effectively cooperate to increase the UAV team’s likelihood of success.
منابع مشابه
Distributed autonomous systems: resource management, planning, and control algorithms
Distributed autonomous systems, i.e., systems that have separated distributed components, each of which, exhibit some degree of autonomy are increasingly providing solutions to naval and other DoD problems. Recently developed control, planning and resource allocation algorithms for two types of distributed autonomous systems will be discussed. The first distributed autonomous system (DAS) to be...
متن کاملFuzzy logic based UAV allocation and coordination
A fuzzy logic resource allocation algorithm that enables a collection of unmanned aerial vehicles (UAVs) to automatically cooperate will be discussed. The goal of the UAVs’ coordinated effort is to measure the atmospheric index of refraction. Once in flight no human intervention is required. A fuzzy logic based planning algorithm determines the optimal trajectory and points each UAV will sample...
متن کاملAutonomous and cooperative robotic behavior based on fuzzy logic and genetic programming
Advances in a fuzzy decision theory that allow automatic cooperation between unmanned aerial vehicles (UAVs) are discussed. The algorithms determine points the UAVs are to sample, flight paths, and the optimal UAVs for the task and related changes during the mission. Human intervention is not required after the mission begins. The algorithms take into account what is known before and during the...
متن کاملPilot Decision Support for Controlling Multiple UAVs
One challenge facing coordination and deployment of unmanned aerial vehicles (UAVs) today is the amount of human involvement needed to carry out a successful mission. Currently, control and coordination of UAVs typically involves multiple operators to control a single agent. The aim of this paper is to invert this relationship, enabling a single pilot to control and coordinate a group of UAVs. ...
متن کاملA Fuzzy Decision Making Approach to Enterprise Resource Planning System Selection
Here, we propose a fuzzy analytic hierarchy process (FAHP) method to evaluate the alternatives of enterprise resource planning (ERP) system. The fuzzy AHP approach allows the users get values more accurately to model the vagueness which changes according subjective ideas in the decision-making environment for ERP system selection problem. Therefore, fuzzy AHP method is used to obtain firm decis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007